John J. Xenakis
john@jxenakis.com

John J. Xenakis

100 Memorial Drive #8-13A
617-864-0010

Cambridge, MA 02142
john@jxenakis.com

www.jxenakis.com

RESUME ADDENDUM

For latest resume online, go to: http://www.jxenakis.com/resume
DESCRIPTIONS OF SELECTED EARLIER PROJECTS

Ability Network Corporation (04/2013-10/2014)

Special sub-project: Ease is a real-time Medicare payment system. Users log into Ease and enter data to make a Medicare claim. Ease stores the claim data into the database, and then logs into the remote IBM mainframe that runs the Medicare software. The Medicare application assumes that anyone logging in is using an IBM 3270 terminal, which was originally designed in the 1960s. The 3270 communicates with the mainframe using 3270DS (3270 data streams), which encode data in tightly packed strings of bytes, using the EBCDIC character encoding.

Ease's code simulates a 3270 terminal by receiving and transmitting 3270DS strings via Telnet, but the 3270DS code is very arcane, and hadn't been looked at in years. Problems with it were ignored or worked around. As a sub-project, I took control of the 3270DS/Telnet subsystem, and identified and fixed problems that had been around for years.

Nectar Corporation (03/2012 - 02/2013)

Summary: Designed and implemented new features and capabilities for Nectar's Converged Management Platform (CMP), a heavily networked/threaded Java system capable of simultaneously monitoring thousands of voice over IP (VoIP) and network devices, including such measures as quality of server (QoS) across an enterprise's entire phone system, including the following:

· Took control of the entire Reporter subsystem. Developed a "Visio-like" graphical interface to the report generator. A user can "drag and drop" various chart and table types onto pages, position them on the pages and resize them. Then, when the report runs, the report manager draws data and data feeds from the server data base and creates a PDF with all the charts and tables as specified by the user. The implementation requires heavy use of Java Swing, and the Drag & Drop API, as well as the JFreeChart charting library.

· Designed and implemented a new system API (known as the "Domain Object API") to replace all the ad-hoc accesses to server data with a consistent API for obtaining data and data feeds from the server data base in a non-hackable secure manner. This was designed so that an XML layer on top of the API would allow external tools to access the user data, for the first time.

Dept. of Transportation (Computer Sciences Corp.) (08/2008 –09/2011)

Summary: Developed enhancements to the FAA's national Traffic Flow Management (TFM) system, related to automated rerouting of plane flights as required by weather or overcrowded skies. Worked on the Traffic Situation Display (TSD), a program that displays all flights in real time on a large map, allowing-down into specific details for particular flights, routes, or particular regions. TSD is written in C++ STL and uses Motif for all dialogs and displays. In addition, used third party products XRT/Table, XRT/Gear and XRT/Field from IST Limited to create special purpose widgets.

TSD is a large complex program that's been under development since the 1980s. Arrived on the project at a time when TSD was turning into a sophisticated real time system with numerous different types of network messages and dozens of new Motif dialog boxes.

As an adjunct to the development work, developed an AutoTest tool that greatly improved productivity. This tool had these features:

· Run tests with the Motif GUI under script control.

· Execute scripts involving any of TSD's 200 dialog boxes and menu commands.

· Execute scripts with variables, expression evaluation and conditions.

· Trace incoming and outgoing network messages to identify problems.

· Track memory usage, so that memory leaks can be detected.

This quality assurance tool is described in detail in:
http://jxenakis.com/resume/AutoTest-Xenakis-110509.pdf
These tools permitted identification of bugs that otherwise would have taken much longer to find. Also wrote a number of other tools: Unix shell script tools for Red Hat Linux, and Emacs lisp macros for Xemacs.

Won an award from CSC for the paper, "International Business Forcasting Using System Dynamics with Generational Flows" :

http://assets1.csc.com/lef/downloads/CSC_Papers_2010_Generational_Dynamics.pdf
Boston Technologies Inc. (10/2007 – 02/2008)

Summary: Designed and implemented a major enhancement to the company's standalone "bridge" product line to allow components to be distributed over networks. Used Java J2EE with Swing and RMI. The application was an online Forex currency trading system integrated with MetaQuotes' MetaTrader4 trading platform.

The company markets a collection of "Bridge" products that permit anyone to become a Forex (foreign exchange) broker. You run this product and customers can buy and sell currencies through your system. You take 1-2% off the top of each trade, so you make money no matter what happens.

The configuration is this: Customer <-> MetaQuotes' MetaTrader4 <-> Bridge <-> Banks/data feeds

The data feeds from banks are presented to the customer as real-time currency quotes. The customer can initiate a buy or sell order through MT4. The order is sent through the bridge to the bank, which accepts or rejects the trade.

The Bridge runs as a desktop application, and communicates with only one bank at a time. The client wanted the program modified so that it could communicate with multiple banks and data sources simultaneously, and to include a trading algorithm that selected the best bank for any given transaction, depending on the values in the data feeds.

The implementation required a complete redesign and refactoring of the Bridge Java code; a process that could be described as "untangling spaghetti." All the code for the different features was tangled together. Completely redesigned the class structure for the program, untangled the code and moved it around within the new class structure. The resulting Bridge product could then configure itself at run time communicate with MT4 or with a bank/data feed. Thus, a Forex broker could have 5 copies of the Bridge application running, one of which communicated with MT4, and the others communicating with four different banks. The application copies communicated with each other via Java's RMI (Remote Method Invocation) capabilities.

The architecture of the result was designed to be as flexible as possible, by isolating all major functions in separate classes, and tying them together through well-defined interfaces. This had the added benefit of providing a framework for intensive testing; each component (UI, MT4, bank, selection algorithm, data feed) could be replaced by a test module that generated thousands of test cases programmatically. The application was heavily threaded, so that different processes could run independently and communicate with one another through synchronized message queues. Eclipse was used as the editing and debugging tool.

Digimarc Corp. (03/2007 – 08/2007)

Summary: Designed and implemented .NET/C# system, including database access (SQL and Pervasive/Btrieve), message queuing, integrated error and exception handling, with function calling to and from existing C DLLs. Includes an IIS Web Service (ASMX).

The company sells a "secure id" service, and is responsible for the manufacture of drivers licenses and other ids for a number of states and countries. Massachusetts drivers licenses are manufactured by Digimarc.

The company's existing manufacturing software was antedeluvian. It was written in C, using a Btrieve back end, with SQL capabilities provided by a Pervasive layer. All database table formats were wired into the C code.

The State of Texas and State of Virginia specifications used new manufacturing devices that would require significant additions to and expansions of the existing data base records. In order to meet these requirements, a major upgrade would have to be made to the company's core software. Sole resource in completing this project, as the entire software group had recently resigned and the supervisor was taking a long sabbatical.

Implemented in 2 stages:

In the first stage, modified the C core system code so that it could handle more database table records. This was very messy, because the data base fields were deeply wired into the code. Redefined the basic table record structures in the C code so that they contained all the needed fields in all required records. (Think of this as the "logical union" of all the fields in all the required record formats.) All the C functions then used these expanded definitions, so most existing code continued to work without change. Subsequently modified the low-level routines that read and write data base records to copy the data in the enlarged record formats to and from the customer-specific record formats.

The 2nd stage required a C#/.NET implementation in order to support new manufacturing devices. Wrote about 12,000 lines of C# code for a re-implementation of the entire C core system in .NET. The new core system handled SQL database access, including generalized table record formats, message queuing, integrated error and exception handling, configuration support and log file support.

In conjunction, implemented the driver for the manufacturing device that sprayed tactile data onto the drivers license. Communication with the device was through an RS-232 port, and the user interface used WinForms.

Integrating all the legacy code with the new code required function calling among managed and unmanaged DLLs in C and C#. This was one of those instances where only ten lines of code are required, but it requires research to figure out what those ten lines are. Also integrated a small test Website, including an IIS Web Service (ASMX).

US Air Force (CAC International) (08/2004 – 06/2006)

Summary: Participated in design and implementation of CITS Block 30, a high-security networked system to be deployed throughout the US Air Force, using ASP.net, IIS, C#, Apache, Netcool, Active Directory (AD), Directory Name Services (DNS), and related security tools.

Instrumental in a large Air Force project involving dozens of hardware and software engineers. Charged with a wide variety of responsibilities, including setting up IIS and Apache Web servers and Websites, testing and implementing SNMP network management systems (Micromuse Netcool, EMC Smarts and others), evaluating content management systems and providing designs for various components.

As an example, Micromuse Netcool is a very sophisticated SNMP-based network management tool able to monitor thousands of network devices simultaneously. It's a multi-component tool, a combination of many other tools that were acquired from other companies. As a result, learned 6 different scripting languages to handle it.

Conducted an evaluation of the leading industry content management systems, and became familiar with all of their features and functionality. (The 2 leading content management systems are EMC's Documentum and IBM's Document Management System.)

401kLoans.com (11/2003 – 03/2004)

Summary: Effectively implemented a C# and ASP.NET application supporting the Federal Reserve Truth in Lending Law (Regulation Z, Appendix J).

The regulations for computing the APR are contained in the Federal Reserve Truth in Lending Law (Regulation Z, AppendixJ). http://www.fdic.gov/regulations/laws/rules/6500-1950.html#fdic6500appendixjtopart226
Implementation of "Reg Z" is fairly straightforward when you have a simple case -- a simple loan or credit card, for example.

But implementing the entire regulation is very complex, because it handles all the complications (multiple advances with different interest rates, multiple fees, multiple prepaid fees, multiple irregular payment schedules, etc., all occurring at different times).

At this time, conducted an internet search and could not find anyone who had done a complete implementation of Reg Z. It's undoubtedly been done in some banks' back rooms, but nothing was publicly available at the time. Successful in completing one of the few full implementations. The implementation of the "loan calculation engine" (not including the UI) was 6000 lines of C# code.

Compendium Research (06/2000 – 08/2000 and 03/2002 – 09/2002)

Summary: In 2000, wrote mortgage calculators in JavaScript. In 2002, took control of large, badly slipping C++ development project and brought it back on schedule. Designed and developed Windows/Linux C++ software to parse and process 60 GB of data, loading it via Oracle's SQL*Loader into a 34-table, optimized Oracle database. JavaScript : mortgage financial mathematical computations.

The project involved reading the print images of telephone bills and storing the data into a database. It was like a "screen-scraping" program, except that it was for print images. There were several different formats, depending on the phone district, and each had different pricing options and features.

The program had different front ends for the different formats, and the front ends were table-driven as much as possible. The back end of the program did internal quality assurance by reproducing all the bill computations and verified that everything added up correctly.

Implementation required designing a database structure involving over 30 tables. During the development process, to be able to change the table definitions quickly, coded the database design as a series of "#define's" in a ".h" file. The ".h" file was used in various coding sequences in the program to provide for table-driven coding. Enabled change of the database design and most of the code adjusted automatically to the new design. Also wrote a separate program that used the ".h" file to create file with "delete table" and "create table" SQL statements, so that the database structure could be quickly re-created within Oracle. This created a great deal of flexibility during the development process, so the tables could be changed quickly for iterative development.

Standard & Poor’s Financial Communications (04/2001 – 06/2001)
Summary: Took control of major behind-schedule Java development project enhancing the American Express Financial Library Website and the Merrill Lynch Investor Education Center Website, and brought it back on schedule.

· Site development required integration and implementation of numerous technologies, including Java Server Pages (JSP), Java, JavaScript, HTML and Perl.

· iPlanet Web server accessing a Sun/Solaris-based Oracle database, using homegrown Content Management System (CMS).

Asked to resolve the performance of the administrative screens. You could select several options for a report and click "Submit,"

and it would take several minutes for a response. Determined that the existing code was making multiple SQL requests to the Oracle back end, and they were taking a lot of time. For example, if someone requested a weekly report from January to June, then the JSP would submit one or two SQL requests (depending on the filtering options) for each week. Rewrote the software so that it took the time series request (daily, weekly, monthly) and the various filtering options and assembled a single SQL statement to retrieve the entire table. The SQL might be very long – sometimes several hundred lines long, containing numerous sub-tables and joins -- but Oracle handles such things very well. This fixed the performance problems, and the administrative screens now got almost instantaneous response.

Thomson Financial-Electronic Settlements Group (03/2001 – 04/2001)

Summary: Modified middleware interface to support XML/SAX transactions for AlertDirect, a host-to-host transaction-based management/alerting system for financial services firms.

This was a brief C++ project that required integrating XML/SAX functionality into existing software.

State Street Bank (05 /1999 – 11/1999 and 02/2000 – 02/2001)

Summary: Developed front-end (Windows COM, ActiveX, MFC), middleware and back-end (UNIX) development of large multi-national financial application.

· Application was written in cross-platform C++, linked to multiple databases (Oracle, SQL Server, Sybase, Informix, ODBC, ADO), and communicated (TCP/IP) over multiple UNIX and Windows servers.

· Installed virtual private network (VPN) applying DES and AES (Rijndael) encryption. Implemented Unicode data flows and international character sets (Japanese Kanji and other Asian sets) using IBM's ICU.

This was a heavily threaded application that was used by customers around the world. The user interface was a highly complex MFC Windows application, using just about every MFC capability available.

The middleware and back end might have to run on various platforms, depending on the customer. Supported platforms included Windows and several versions of Unix, along with any SQL database. So the C++ code had to be "cross-platform," meaning that the middleware could run on any supported platform.

The database interface was implemented as a database layer that provided a standard API that was used by all the middleware applications. There were drivers written in C++ for the database-specific APIs for each of Oracle, SQL Server and Sybase, as well as drivers for ODBC and ADO. Most memorable was the Sybase API, which included a complex internal crazy making "transaction transition model," and required a 2000+page manual to document.

Staples (12/1999 – 02/2000)

Summary: Created VB tools to support applications on staples.com site. Automated real-time Website monitoring with service interruption alarms. Other applications targeted IIS and SQL Server.

Requested to develop a collection of Visual Basic (VB6) applications to perform various administrative tasks. The largest was a program that tested the Staples Website. It would bring up the home page, click through to a product page, click through to a specific product page, select specific options and click through, and so forth. There were typically about 8 pages in the sequence, finishing with the selected product in the cart, and the program requesting a credit card number. If the test failed twice in half an hour, then the program would automatically notify people -- via e-mail and via beepers. This allowed Staples to guarantee uptime. The program was highly configurable, with interfaces that allowed the easy addition of page sequences, modification of the list of people being notified and the notification methods.

One particular performance problem is worth noting. The program would work fine for several hours at a time, but then would slow down considerably. Diagnosed this as a memory management problem -- memory was getting fragmented over time. The program worked by bringing up a Web page, decomposing it using the DOM (document object model) API and creating a tree within VB using internally allocated node objects. There might be hundreds of these node objects for each page, and then they were all freed when the Web page analysis was done. The fix to this problem was to avoid freeing the node objects by maintaining a free chain of unused node objects, and allocating new objects from the free chain. This modification completely solved the performance problem.

Process Software Corp (1994-1995)
Summary: As Senior Analyst, accountable for Development and Quality Assurance. Charged with the complete object-oriented design and development of several Windows-based application programs, including the following:

· Upgraded a large Windows 3.1 program written in C to C++ using MFC (Microsoft Foundation Classes) and Win32, to take advantage of the graphical features of Windows 95 and Windows NT.

· Designed and developed C++ implementation of multi- tasked, multi-threaded Quality Assurance test program running on Windows NT for testing the company's network communications product.

· Gave a five-day course to the company's employees on "C++ and object-oriented development for C programmers," in order to upgrade the employees' skills capabilities

Northrop Corporation (1985 – 1990)

Summary: As Senior Consultant and Project Leader, developed several embedded operating systems on various microcomputer CPUs, including device drivers and simulators. Also built several tools for development of embedded systems and supported groups of developers using Assembler, FORTRAN, Jovial and Ada.

· Developed dozens of system administration tools in VAX DCL; created floating point and instruction-level hardware simulators in VAX assembler language and C.

Digital Equipment Corporation (1978 – 1983)

Summary: As a Consultant, designed and developed a full-language PL/I compiler on DEC's mainframe computers, using Assembler language.
Technology Journalism

InformationWeek Magazine, Boston Bureau Chief / Technology Editor, 1990-91

CFO Magazine, Technology Editor and Columnist, 1992-2001 (part time)

IT Instruction

Java Programming through Northeastern, EMC, 2001

Java Programming through Northeastern, Sybase, 2000

C++ Course, Process Software, 1994

C Course, Grumman, 1985

IBM Mainframe Assembler, Boston University, 1980-81

IBM Mainframe PL/I, Boston University, 1979

Page 3 of 6

